治疗“绿色癌症”,智能细菌来帮忙******
◎实习记者 骆香茹
炎症性肠病虽然致死率较低,但长期以来,也面临着诊断困难和难以根治的问题,被称为“绿色癌症”。
近日,华东理工大学生物工程学院院长叶邦策教授及该院副教授周英团队在《细胞—宿主与微生物》上发表了一项研究成果。该团队开发了一株智能工程菌——i-ROBOT,可实现在体无创实时监测和记录炎症性肠病的发生与发展,并以自调控的给药模式缓解病症。
各色技术上阵诊断“绿色癌症”
炎症性肠病是胃肠道最常见的慢性炎症性疾病,包括克罗恩病和溃疡性结肠炎。腹痛、腹泻、便血等是炎症性肠病主要的症状表现。
当前炎症性肠病的诊断方法在临床上主要有肠镜、电子微胶囊肠镜等。论文通讯作者叶邦策介绍,肠镜检查的好处是直观,可以观察到人体整个肠道的情况。“但肠镜检查是一项有创检查,在操作过程中难免损伤肠道黏膜,造成少量出血,引起被检者的不适感,患者依从性差。”叶邦策补充道,“也有无痛肠镜,但这种方式有一定风险,做这种检查前需要患者进行全身麻醉,对患有心脏病和肺部疾病的人来说,风险较大。”
电子微胶囊肠镜是近年来新兴的检查方式,叶邦策介绍,与传统肠镜相比,其对患者造成的痛苦更小、适应性更强,能检查传统肠镜无法到达的回肠、空肠等。但胶囊在消化道运动的过程中,无法人为控制其运动轨迹,其在消化道等位置会随机翻转,产生视觉盲区,有可能导致错过病变部位、延误病情等情况发生,且电子微胶囊肠镜的检查费用更高,给患者带来的经济压力更大。
智能工程菌是炎症性肠病的新兴诊断方式之一。叶邦策介绍,他们会提前3天将智能工程菌通过口服灌胃的方式送入小鼠体内,等肠炎造模给药结束后通过分析粪便中存在的智能工程菌的荧光信号和基因组DNA突变情况,确定肠道炎症发生、发展程度。
“智能工程菌在诊断灵敏性、便捷性以及成本上都具有无法比拟的优势,但目前仍仅能通过分析粪便样品来评估疾病的有无或严重程度,而难以实施在体原位诊断。”叶邦策表示,“此外,智能工程菌的生物安全性还需进一步加强。”
治疗方法从抗炎药物到智能活菌机器人
为了攻克炎症性肠病,专家们想了不少办法。过去,炎症性肠病的主要治疗方法是使用抗炎药物和免疫调节药物。叶邦策介绍,随着肠道微生物研究的深入,过去十年间,调节肠道微生态、使用智能活菌成为炎症性肠病的研究热点,创新研究不断涌现。
叶邦策团队开发的i-ROBOT是使用大肠杆菌Nissle1917作为底盘细胞进行改造的。叶邦策介绍,i-ROBOT能够感知低浓度的炎症标志物,具有诊断早期肠炎的潜力。同时,i-ROBOT还能记录疾病发生与发展的信息,帮助监测胃肠道健康状态。
当然,i-ROBOT的功能远不止于此。叶邦策表示,i-ROBOT还可以在病灶部位根据疾病的严重程度释放相应浓度的药物,在实现有效治疗的同时,又能避免因过度用药而产生的副作用。
“我们认为智能工程菌是智能活菌机器人的一种。”叶邦策补充道,“智能工程菌具备优异的感知和收集周围环境信息的能力,能够与周围环境进行互动,并能在特定时间和地点采取特定的行动。”
近年来,“粪便也能治病”的冷知识刷新了不少人的认知,通过粪菌移植治疗炎症性肠病也受到越来越多的关注。粪菌移植是将健康人的肠道菌群植入患者肠道,重建肠道微生态系统,以此治疗肠道疾病。粪菌移植成为炎症性肠病治疗的一种新选择。然而,叶邦策提醒道:“尽管有很多阳性的结果支持粪菌移植的可行性,但是目前一些安全性、伦理性问题尚未得到很好地解决,粪菌移植疗法还存在争议。”
发展交叉学科或可破解炎症性肠病诊疗难题
叶邦策介绍,当前,许多研究证明了智能工程菌具有在活体内诊断和治疗疾病的应用潜力,且智能工程菌逐步朝着智能化和临床应用性的方向发展。其中,功能稳定性、临床效力和安全性是决定智能工程菌能否成功应用于临床的关键。
叶邦策表示:“合成生物学为智能工程菌感应疾病标志物的种类及传感性能提供了很好的策略,然而仅仅依靠合成生物学难以解决所有问题。”
叶邦策认为,交叉学科的发展为此提供了新的契机,例如将合成生物学与材料和化学科学相结合,能够增强智能工程菌的定植性、靶向性和可控性,进而实现炎症部位的在体原位成像检测。
此外,智能工程菌的安全性也是限制其临床应用的重要因素,为了应对智能工程菌可能导致的抗性转移、代谢物毒性等问题,研究者们仍在优化技术方案,通过不使用抗性基因作为筛选标记、选择更安全的益生菌作为智能工程菌的底盘、进行细菌毒力因子的敲除、对逃逸细菌进行有效的控制和清除等策略,有针对性地解决相关难题。
谈到智能工程菌的应用前景时,叶邦策表示,从诊断的角度来说,如果智能工程菌能够通过临床试验,运用到炎症性肠病的临床治疗中,将打破传统肠道疾病的诊断模式,部分替代侵入性的肠镜检测,能让受检者在没有任何痛苦的情况下,诊断出其是否罹患炎症性肠病。
“第三届全球农创客大赛”结果揭晓 拼多多持续加码农业科技******
近日,“第三届全球农创客大赛”决赛结果正式揭晓。
据悉,在来自25个国家和地区的98份申请中,有7支队伍进入总决赛,经过激烈角逐,最终由来自中国浙江Hi, Mr. N!团队的智能农业机器人项目,荣获本届大赛金奖;来自肯尼亚的FSPN,以及来自中国的区块链韭菜项目荣获大赛银奖;来自肯尼亚的Farmer Lifeline Technologies和AgroTech,以及来自中国的国信区块链农业生态循环产业园项目,摘得铜奖。
“全球农创客大赛”旨在为青年农业企业家和创业者建立一个整合多方资源的平台,促成一个包括国际组织、政府机构、学术界和研究机构以及企业在内的全球网络,将全球青年创业者与农业食品系统中的不同利益相关者联系起来,并通过在国际舞台上展示他们的创新解决方案,推动农业科技应用,加速农业系统转型。
“农创客大赛”加速农业食物系统转型
此次“第三届全球农创客大赛”吸引了来自中国、美国、德国、尼日利亚、肯尼亚等世界各地的选手报名参赛,其中亚洲、非洲等发展中国家参赛队伍占比较大。
与第一届大赛聚焦数字农业技术创新解决农产品上行痛点、第二届大赛关注助力数字乡村建设实现“FAO的四个更好”相比,“第三届全球农创客大赛”更加聚焦如何能够加速农业食物系统转型实现“消除贫困”、“零饥饿”“性别平等”联合国2030可持续发展目标。
浙江大学副校长何莲珍表示:“今晚的决赛是2022年全球农创客大赛的里程碑。”
在大赛中拔得头筹的Hi, Mr. N!团队,展示的是一款用于精准检测、精准施肥的智慧农业机器人。经过近十年的攻关,浙江大学教授何勇、副研究员冯旭萍及其科研团队创制了一款高度和宽度可自动调节的智能农业机器人(Hi, Mr.N),通过光谱技术手段,可以准确快速获取作物不同生育期的生长状态,根据作物实际氮需求形成处方图,实现肥料精准化管理。
何勇表示,作物氮含量的精准检测是攻克的关键难题,团队构建了多种作物的广适应性模型体系,可以节省20%~30%的肥料使用。上述研究成果已经应用于茶叶、草莓、棉花等多种作物上。
来自肯尼亚的Farmer Lifeline Technologies项目通过建立硬件和软件之间的联动,来帮助作物病虫害检测。项目应用带摄像头扫描仪的太阳能设备,基于人工智能、数据分析和机器学习得出分析结果,并向农民的手机发送警报。
同样来自肯尼亚的AgroTech项目,为小农户提供有效的保鲜服务和移动应用,将农民与食品供应商联系起来,以帮助减少食品损失和浪费,提高市场和贸易的透明度。
来自中国长春的农业生态循环产业园项目,聚焦有机种植方向。以授粉为例,公司采用熊蜂对大棚内的蔬菜进行生物授粉,在该技术推广之前,为了节约成本,农户一般对大棚内的蔬菜采用激素处理、人工授粉的方式。采用熊蜂授粉的方式结出的果实质量更好,市场价格更高。
长春国信现代农业科技发展股份有限公司副总经理李音表示,公司每年培训区域农民8000~10000人次,参加农创客比赛有助于把有机蔬菜种植技术推广到全国。
拼多多持续加码农业科技
“得益于国际机构、政府、高校与企业的紧密合作,‘全球农创客大赛’已成功举办三届,激发了全球青年投入农研科创的兴趣与热情,并推动一系列科研成果的应用转化。”全球农创客大赛项目组组长、浙江大学-FAO数字农业创新创业团队负责人、浙江大学食物经济与农商管理研究所所长卫龙宝表示。
作为对全球农创客大赛提供全方位持续支持的企业,拼多多以农产品起家,通过引导优化农产品供应链,助力农产品上行及乡村振兴。其创新“农地云拼”模式,通过拼购模式,把原来在时间和空间上极度分散的需求,汇聚成相对集中的订单,不仅极大优化了中间交易环节,降低了销售成本,还减少了流通时间,帮助农产品打开销路,助力农民提效增收。
拼多多坚持对农业及农业科研的长期投入。自2020年开始,拼多多联合中国农业大学、浙江大学等顶尖机构连续举办三届“多多农研科技大赛”,以智慧农业技术解决方案为目标,为年轻的研究人员提供发挥才华的启动平台,促进农业实体与数字化融合。
2021年8月,拼多多设立“百亿农研”专项,该专项不以商业价值和盈利为目的,致力于推进农业科技进步,以农业科技工作者和劳动者进一步有动力和获得感为目标。目前,拼多多先后与联合国粮食与农业组织、新加坡食品与生物技术创新研究院、浙江大学等国内外科研团队展开合作,在科学种植、农业机器人、智慧农业、未来食品等领域深入研究。
拼多多致力于在种植端助力前沿科技研究向农业实际应用转化。2022年度,拼多多加大对高科技农产品的资源倾斜,以销量反哺科研,世壮燕麦片、烟薯25、西大魔芋、晋谷21号小米、普莱赞巧克力等一大批农业院校研发的高科技农产品成为重点扶持的对象。
(文图:赵筱尘 巫邓炎) [责编:天天中] 阅读剩余全文() ![]() 快盈v地图 |